Approach to a bleeding neonate

Dr Shilpa Kalane DNB Neonatology Consultant Neonatology, Deenanath Mangeshkar Hospital, Pune

Introduction:

- Neonatal bleeding is associated with such catastrophes because of the relatively small total blood volume of newborn infants as well as the tendency to be concealed in some cases.
- Bleeding disorders had been reported to be a contributor to newborn morbidity and mortality in various centres in different parts of the developing world.

Physiological peculiarities of neonatal hemostasis:

- Although, the platelets count is the same for adults as well as preterm and term babies (150 400 × 10 /l), preterm babies are more prone to bleeding due to easy bruising arising mainly from *increased fragility of their blood vessels*.
- The plasma levels of fibrinogen and clotting factors V and VIII in newborns are also near adult levels while those of factors *II*, *VII*, *IX*, *X*, *XI*, *XII and XIII are very depressed* in newborn infants. These deficiencies are worse in preterm infants because hepatic synthesis of clotting factors ordinarily increase with gestation.
- Anti-coagulation factors like *antithrombin III, plasminogen and Proteins C and S are also remarkably low at birth.* These deficiencies in the anti-coagulation factors protect neonates against abnormal bleeding despite the physiologic deficiencies in the clotting factors.
- Therefore, laboratory values of these parameters in the neonatal period should be interpreted with consideration for the maturity and age of the patient.

Evaluation of a bleeding neonate:

• The first essential step in the evaluation of a bleeding neonate is to establish whether the bleeding infant is *well or sick*. An ill baby may have fever, hypothermia, lethargy or irritability, feed refusal, feed intolerance, poor colour or abnormal cry.

Features of abnormal bleeding:

- This may include spontaneous umbilical oozing, oozing from injection and venepuncture sites, cephalohaematoma and subgaleal haematoma, petechiae, purpura, easy bruising and ecchymosis.
- Other manifestations include post-circumcision bleeding, bleeding into muscles and joints, mucosal bleeding like malaena, haematochezia, heamatemesis and haematuria. It may also be concealed in the cranium (usually within the ventricles, cerebral tissues or in the subarachnoid spaces) and manifest with features of raised intracranial pressure like seizures and altered sensorium.

A detailed history and complete physical examination is, therefore, essential in establishing the aetiology and severity of bleeding.

History:

- *Bleeding occurring soon after birth* may be due to neonatal thrombocytopaenia (autoimmune or alloimmune), disseminated intravascular coagulopathy (DIC) or haemophilia.
- *Classic vitamin K deficiency bleeding (VKDB)* occurs typically between the 2 and 5 days of life, while the late form occurs between the 4 and 12 weeks of life. Babies who are exclusively breastfed or babies on nil per oral and prolonged antibiotic therapy are particularly prone to *late onset VKDB* especially if they are not given prophylactic vitamin K soon after birth.
- *Maternal febrile illnesses* associated with exanthema or jaundice during pregnancy may suggest intrauterine TORCHES (toxoplasmosis, rubella, cytomegalovirus, herpes, Epstein Barr virus and syphilis) infection. Such intrauterine infections cause nepnatalhrombocytopaenia.
- *Previous bleeding episodes in the mother* may suggest autoimmune thrombocytopaenia following Immune Thrombocytopaenia (ITP) and systemic lupus erythematosus (SLE).
- *History of perinatal events* like abruptio placentae and asphyxia are also usual in neonatal bleeding due to DIC. DIC occurs commonly in neonatal intensive care units as a complication of neonatal sepsis.
- *Maternal ingestion of drugs* like phenytoin, isoniazid and non-steroidal antiinflammatory agents may increase the hepatic metabolism of vitamin K and

predispose to VKDB. Quinine and sulphonamides therapy may also cause immunemediated maternal and neonatal thrombocytopaenia.

- *History of previous neonatal bleeding and recurrent neonatal deaths* may suggest neonatal alloimmune thrombocytopaenia (NAIT) although this may occur in the first pregnancy in about 40 to 50% of cases.
- *Family history of bleeding may suggest inherited disorders* particularly haemophilias, von Willebrand disease and clotting factor deficiencies. Parental consanguinity may also predispose to disorders of platelet functions like Bernard-Soulier syndrome.

Physical findings:

- *Examine for the tell-tale signs of bleeding* uncontrolled oozing, purpura, petechiae, ecchymosis, pallor and features of circulatory collapse,
- Examine for etiology specific signs -
 - Microcepahly, chorioretinitis, cataract and hepatosplenomegaly occur in TORCHES infection.
 - Prolonged jaundice and hepatomegaly may occur in hepatic diseases.
 - Seizures and apnea as well as severe respiratory distress may occur in severe cases of intracranial and pulmonary bleeding respectively.
 - Congenital hydrocephalus may occur from intra-uterine intracranial haemorrhage occurring in NAIT.
 - Rapidly-enlarging haemangioma may result in Kasabach-Merritt syndrome.
 - Limb deformity especially absent radii occur in TAR (thrombocytopaenia, absent radii) which is a cause of inadequate platelet production.

Laboratory investigations:

Laboratory investigation	Interpretation
Complete blood count (CBC)	The haematocrit (Hct)
	• May be abnormally low (<0.45) following severe
	blood loss and in the presence of TORCHES
	infection.
	Leucocyte count:
	• Usually normal except in some cases of NAIT
	when neutropaenia may occur.
	Increase or decrease in sepsis
	Platelets counts:
	• Thrombocytopaenia is associated with DIC,
	septicaemia, TORCHES infection, NAIT, maternal
	immune thrombocytopaenia, Kasabach-Merritt
	syndrome and congenital disorders like TAR,
	Trisomy 18, Fanconi anaemia and Wiskott Aldrich
	syndrome.
	Congenital thrombocytopaenia
	Monitor maternal platelet counts.
	• This issignificantly reduced in autoimmune cases
	while it is within normal limits in alloimmune
	cases.
	• In NAIT, the mother is usually negative for the
	platelet antigen PAI-1a while the baby is positive
	for PAI-1a. Instructively, the PAI-1a platelet
	antigen is the commonest.
	Qualitative platelet defect:
	• VKDB, liver disease, haemophilia, vonWillebrand
	disease and disorders of platelet function like
	Glanzmann thrombastenia are associated with
	normal platelets count

Peripheral blood smear	• Encourse at a switch so are the same and have a still the set of the
Peripheral blood shlear	• Fragmented erythrocytes and burr cells typically
	occur in DIC and Kasabach-Merritt syndrome.
	• Reticulocytes and nucleated cells are increased in
	TORCHES infection.
	• Giant platelets occur in maternal immune
	thrombocytopaenia, NAIT and Kasabach-Merritt
	syndrome while the platelets appear dysplastic in
	TAR and Bernard-Soulier syndrome.
Fibrin degradation product	• These are increased in situations of increased cell
(FDP) and D Dimer	fragmentation like DIC and Kasabach-Merritt
	syndrome.
Apt test	Helps to differentiate between neonatal
	gastrointestinal haemorrhage and swallowed
	maternal blood syndrome when neonates present
	with Malena or pseudo haemorrhage of the
	gastrointestinal system soon after birth
Bone marrow examination	• This is relevant in cases of bleeding secondary to
	inadequate platelet production as it may occur in
	congenital leukaemia and Wiskott Aldrich
	syndrome where excessive blast cells and dysplastic
	megakaryocytes respectively are typical.
Liver function test	• Hyperbilirubinaemia, decreased serum albumin and
	deranged hepatic enzymes (Aspartate transaminase,
	Alanine transaminase and Alkaline transferase)
	characterize TORCHES infection and liver diseases
	generally.
Coagulation profile	Normal coagulation profile - Prothrombin Time
	(PT) - 11 to15 seconds, Partial Thromboplastin
	Time (aPTT) - 30 to 40 seconds, Thrombin Time
	(TT) - 11 to 15 seconds, bleeding time (BT) - 4 to 8
	minutes (mostly determined by individual
	laboratories).

	Prolonged PT and PTT with reduced plasma
	fibrinogen - DIC, TORCHES infection, Kasabach-
	Merritt syndrome and liver impairment.
	Prolonged PT and PTT with normal fibrinogen
	level- VKDB.
	• Normal PT and PTT - in maternal immune
	thrombocytopenias, NAIT, conditions of inadequate
	platelets production like congenital leukaemia,
	TAR, Trisomy -18 and Wiskott Aldrich syndrome,
	vonWillebrand disease.
	• Normal TT- VKDB and haemophilia
	• Prolonged TT - DIC, liver disease and TORCHES
	infection.
	• Prolonged aPTT and normal PT - Hemophilia.
	• Prolonged BT - thrombocytopaenia and in
	situations of poor platelets function like von
	Willebrand disease, Bernard Soulier syndrome and
	Glanzmann thrombasthenia.
Plasma clotting factors	• This measures the plasma levels of the various
deficiency	clotting factor using individual factor deficient
	plasmas. However, afibrinogenemia and
	haemophilia are common clotting factor
	deficiencies in the neonatal age.
Mixing study	• Used to determine the cause of prolonged PT or
	aPTT.
Platelet aggregometry	Activation of platelet-rich plasma from a suspected
	case of platelet dysfunction with a platelet
	aggregation agonist like adrenaline or collagen
	corrects the dysfunction.
	• Reduced platelets aggregation characterizes
	conditions of platelets dysfunction like Bernard
	Soul ier syndrome and Glanzmann thrombasthenia.
USG / MRI	To exclude intracranial hemorrhage

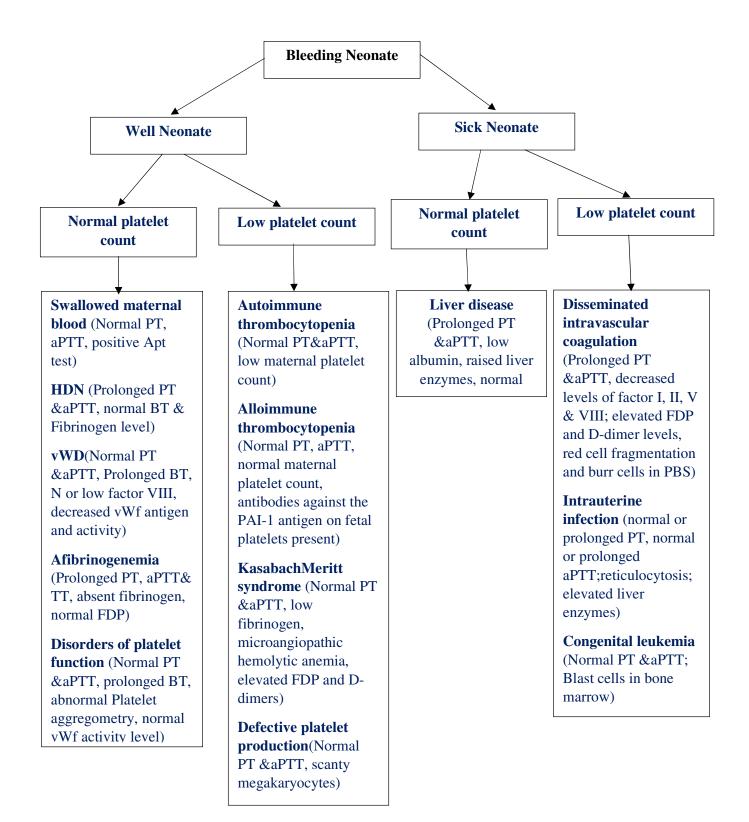


Fig. 1. The differential diagnoses and steps in the laboratory evaluation of neonatal bleeding disorders