Sudden deterioration of a neonate on noninvasive and invasive respiratory support

Dr Sukena Susnerwala, 3rd year DM Neonatology Resident Dr L S Deshmukh, Professor & Head, Department of Neonatology Government Medical College, Aurangabad

Introduction

- Intensive care is associated with adverse outcomes, often independent of the underlying disease process (1)
- Deterioration events are fairly common in the neonatal intensive care unit, can be anticipated in few conditions while most are sudden and unanticipated (2) and can have long lasting repercussions.
- Majority of the deterioration episodes are manifested as sudden collapse of a neonate on invasive or noninvasive support with all or few of the following
 - a. desaturation
 - b. cyanosis
 - c. bradycardia
 - d. hypotension
 - e. cardiorespiratory arrest

The usual sequence as observed in most cases of deterioration is as depicted below

Fig 1: Sequence of worsening

Thus, the time period between the gradual worsening and deterioration phase provides a window of opportunity and action and maximum efforts should be directed towards identifying babies during this period. Few events like cardiac arrhythmias, convulsive apnea may however not follow the above sequence.

2. Causes and differential diagnosis:

- Most causes are common to both babies on non-invasive and invasive support and can be classified on the basis of their origin as-
- a. Machine related (ventilator, CPAP machine, HFNC)
- b. Interface, Endotracheal tube(ET) related
- c. Lung/ Circulation related

Table 1: Causes of worsening

MACHINE	INTERFACE	LUNG/CIRCULATION
a. Ventilator malfunction	a. Self extubation	a. Pneumothorax
b. Circuit leak	b. Tube block with	b. Worsening of lung
c. Blender /compressor	secretions, blood	disease
failure	c. Kinked, compressed	c. Persistent pulmonary
d. Failure to address	tube	hypertension/ Patent
alarms	d. Interface displacement	duct arteriosus
e. Inappropriate settings	e. Nasal block	(PPHN/PDA)
		d. Uncompensated shock,
		acute blood loss
		e. Arrhythmia

Fig 2: Causes of worsening

Withtechnicaladvances and routine use and availability of bedside graphic and blood gas, newer additions have been made. (3)

Fig 3: Approach to sudden deterioration:

Table 2: BOLDPEEP approach

	History and examination	Charts, blood gas,	Pulmonary	Action
		xray	graphics	
В	a.HISTORY:No steroids.	a.CHARTS: rising	Low	Increase PIP/MAP
	PPROM, high fio2	Fio2 trend, increasing	compliance,	surfactant
		PIP	high	increase FIO2
			resistance,	step up antibiotics
	b.EXAM: poor chest	b.BLOOD GAS:	flat pv loop	
	movement, reduced air	respiratory or mixed		
	entry, negative cold light	acidosis		
		c.X-RAY: RDS, low		
		volume lungs,		
		consolidation		
0	a.HISTORY: sepsis,	a. CHARTS: rising	Variable	Frequent suctioning
	secretions, frequent	Fio2, frequent	blunted	Change tube if blocked
	suctioning	suctioning,	flows,	Increase in PIP/Fio2
		desaturations	serrated	may be needed briefly
	b. EXAM: Variable chest	periodically	patterns on	
	movement, reduced air		flow loop,	
	entry, crepts, wheeze	b. BLOOD GAS:	variable	
		respiratory acidosis	compliance	
			/resistance	
		c.X-RAY: Variable		
		collapse,		
		consolidation,		
		aspiration		
L	a.HISTORY: no	a.CHARTS: Rising	High	Pull out ET tube
	improvement on ventilator	fio2, desaturations	resistance	
	b.EXAM: poor unilateral left		Blunting of	

	sided air entry and chest	b.BLOOD GAS:	volume and	
	movement	Respiratory acidosis,	flow scalars	
		hypoxemia		
		c.XRAY: Long ETT,		
		asymmetry,		
		hyperinflation and		
		collapse		
D	a.HISTORY: sudden	a.CHARTS:	No	Reintubate
	desaturation with no	previously stable,	expiratory	Fix interface promptly
	response to ambu, Tpiece	recent handling	flow,	on non-invasive
			incomplete	
	b.EXAM: No air entry, chest	b.BLOOD GAS:	loops, ET	
	rise, audible leak	previously normal	disconnected,	
		c.XRAY: No tube	low MV	
		seen	alarms	
Р	a.HISTORY: No steroids,	a.CHARTS: sudden	Air trapping	Bedside
	severe RDS, MAS, drop in	deterioration	in trends	tapping/intercostal
	blood pressure		before the	drainage
	b.EXAM: asymmetry,	b.BLOOD GAS:	event,	
	transillumination	respiratory or	leak,autocycl	
	positive, reduced air entry	metabolic acidosis	ing	
		c.XRAY:		
		pneumothorax,		
		pneumomediastinum		
Е	a.HISTORY:frequent	a a CCHARR ISS frequent	Obstructive	Address alarms
	alarms, water in	abaBalsOOD GAS	pattern on	Check circuit
	circuit,central line inserted	c.XRAY	flow loop if	Change circuit
	recently	b.BLOOD GAS:	water in	Biomedical engineer
	B.EXAM: poor chest	previously stable	circuit	

	movement, reduced air			
	entry, improvement on	c.XRAY: misplaced		
	Tpiece	central		
		lines(arrhythmia,pleur		
		al effusion)		
EP		a.CHARTS: rising	High	Sedation
	a.HISTORY:bad lung	Fio2, high pain score,	resistance,	Synchronized modes
	disease, no sedation, irritable	desaturations, high BP	beaking on	Adjust trigger
	baby		PV loop,	Extubation if ready
	b.EXAM:active	b.BLOOD GAS:	auto trigger	
	baby,retractions,irritability	variable respiratory		
		alkalosis		
		a VDAV: significant		
		C.AKA I. Significant		
		lung disease		

3. APPROACH TO DIAGNOSIS

- > The following questions should be asked when faced with a collapsing baby
 - A. How stable was the baby previously?
 - B. How rapidly is the patient deteriorating?
 - C. How much time do we have, do we analyze and investigate or act first?

STEPWISE APPROACH:

- a. Ensure that at least two people are available for management- a leader and an assistant
- b. Necessary working equipment available at bedside
- c. Systematic management and investigative workup simultaneously
- a. Preliminary steps :

The following 3scenario are possible at this juncture:

- 1. Poor chest rise and falling spo2
- 2. Adequate chest rise and improving spo2
- 3. Adequate chest rise and falling spo2

Steps in babies with adequate chest rise and falling spo2

Fig 4: Algorithmic approach for sudden collapse on mechanical ventilation (Readyreckoner) (5)

Fig 5: Algorithmic approach for sudden collapse on noninvasive (Ready-reckoner)

4. SUMMARY AND PREVENTION:

- Thus, algorithmic and systematic approach on the background of history and clinical examination can aid in quick diagnosis and crisis aversion.
- > Anticipation is the key, rigorous monitoring and action before deterioration.
- Retrospective analysis and audit periodically.
- Integration of quality improvement principles (5).
- Simulation and periodic training and testing of all stake holders.

Table 3: PREVENTIVE STEPS

Interface fixation
 Timely suction
 Alertness and diligent monitoring
 Bedside equipment check in each shift
 Simulation and training
 Early extubation

REFERENCES

- Hopkins RO. Does critical illness and intensive care unit treatment contribute to neurocognitive and functional morbidity in pediatric patients?. Jornal de pediatria. 2007 Dec;83(6):488-90.
- 2. Dimaguila MA, Di Fiore JM, Martin RJ, Miller MJ. Characteristics of hypoxemic episodes in very low birth weight infants on ventilatory support. The Journal of pediatrics. 1997 Apr 1;130(4):577-83.
- 3. Vas C, Medd N, Bustani P. The desaturating intubated neonate: is DOPE enough?. Infant. 2015;11(1):1-4.
- 4. Batra D, Schoonakker B, Smith C. Mechanical Ventilation in Neonates. Nottingham Neonatal Service-Clinical Guidlines. 2017:1-26.
- Rajiv PK, Lakshminrusimha S, Vidyasagar D, editors. Essentials of Neonatal Ventilation, E-book. Elsevier Health Sciences; 2018 Dec 10.